Poisson and Hamiltonian superpairs over polarized associative algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson and Hamiltonian Superpairs over Polarized Associative Algebras1

Poisson superpair is a pair of Poisson superalgebra structures on a super commutative associative algebra, whose any linear combination is also a Poisson superalgebra structure. In this paper, we first construct certain linear and quadratic Poisson superpairs over a semi-finitely-filtered polarized Z2-graded associative algebra. Then we give a construction of certain Hamiltonian superpairs in t...

متن کامل

Polarized Associative Algebras1

Poisson superpair is a pair of Poisson superalgebra structures on a super commutative associative algebra, whose any linear combination is also a Poisson superalgebra structure. In this paper, we first construct certain linear and quadratic Poisson superpairs over a finite-dimensional or semi-finitely-filtered polarized Z2-graded associative algebra. Then we give a construction of certain Hamil...

متن کامل

Non-associative algebras associated to Poisson algebras

Poisson algebras are usually defined as structures with two operations, a commutative associative one and an anti-commutative one that satisfies the Jacobi identity. These operations are tied up by a distributive law, the Leibniz rule. We present Poisson algebras as algebras with one operation, which enables us to study them as part of non-associative algebras. We study the algebraic and cohomo...

متن کامل

Poisson Algebras and 3D Superintegrable Hamiltonian Systems

Using a Poisson bracket representation, in 3D, of the Lie algebra sl(2), we first use highest weight representations to embed this into larger Lie algebras. These are then interpreted as symmetry and conformal symmetry algebras of the “kinetic energy”, related to the quadratic Casimir function. We then consider the potentials which can be added, whilst remaining integrable, leading to families ...

متن کامل

Associative Algebras, Punctured Disks and the Quantization of Poisson Manifolds

The aim of the note is to provide an introduction to the algebraic, geometric and quantum field theoretic ideas that lie behind the Kontsevich–Cattaneo–Felder formula for the quantization of Poisson structures. We show how the quantization formula itself naturally arises when one imposes the following two requirements to a Feynman integral: on the one side it has to reproduce the given Poisson ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2001

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/34/19/319